
SPEED OF SOUND: Kundt’s Tube Fall 2014

OBJECTIVE:

The goal of this experiment is to measure the speed of sound, vs, in the air. In the first method the speed
is found by measuring several resonant frequencies (part 1) and wavelengths for several resonant frequencies
(part 2) (both are usual methods for Kundt’s tube). In the second method we will use white noise (generated
by a computer, Lab View) to find resonant frequencies formed within a resonant tube, using fast Fourier
transform (FFT) method, which is the best known and widely used method of transporting time domain data
(pulse of the microphone) into the frequency domain (series of the resonant frequencies present in the tube).
The accepted value for the speed of sound in ideal gas (like air, at normal temperature and pressure) is:

v = v0

√
1 + αT where v0 = 331.5 m/s and α =

1

273.2
(oC)−1 is the coefficient of thermal expansion for

ideal gas and T is the temperature of gas in oC.

BACKGROUND:

Reflection of sound; standing waves

In a cylindrical tube filled with air or some other gas, the sound wave is approximately plane wave. Its
amplitude is approximately constant. The wave reflects at the end of the tube. If the tube is closed with
a hard wall, the wave reflects, but with the changed sign: the reflected wave has a length difference of λ/2
with respect to the incoming wave, that is there is a difference in phase by π. Incoming and reflected wave
interfere to produce standing wave, which has phase speed equal to zero (wave does not move, or positions
of nodes and antinodes do not move), which means that all the points along the wave have the same phase.

For the closed tube (closed on both sides, like ours), let’s assume that
the source of sound waves is at point S (fig. 1) and the wall, where
the reflection occurs, is at W . The displacement from equilibrium,
u1(x, t), of point M , produced by the incoming sinusoidal wave, at
the position that is L− x from the source S is:

u1(x, t) = um cos 2π
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Figure 1. Describing the standing waves.

Displacement at point M due to the reflected wave, because of the phase difference of π (λ/2 in length) and
traveled path L+ x, is:

u2(x, t) = um cos 2π

(
t

T
−
L+ x+ λ

2

λ

)
= −um cos 2π

(
t

T
−
L+ x

λ

)
.

Resultant displacement from equilibrium, u(x, t), at point M is:

u(x, t) = u1 + u2 = −2um sin 2π
x

λ
sin 2π

(
t

T
−
L

λ

)
The phase of the oscillations 2π

(
t
T
− L

λ

)
does not depend on x, the distance from the wall. The phase is

the same for all the points of the resulting wave at the certain moment. It means that the speed of that
phase is equal to zero: we have produced the standing wave.

The resultant amplitude of the displacement for the particles is: A = −2um sin 2π
x

λ
The standing wave amplitude A changes with the distance from the wall, x. At all the points at distances

x = k
λ

2
(k = 0, 1, 2, ...) from the wall, the amplitude is equal to zero. These points are called nodes of the

standing wave. We see that the node is at the point of the wall, and the distance between the consecutive

nodes is λ/2. At all the points at distances x = (2k + 1)
λ

4
the amplitude changes between its extreme

values 2um and −2um. These points are called antinodes, and the distance between consecutive antinodes
is λ/2.
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If the tube is open at one end, so that the reflection occurs on the same gas as inside the tube, there is no
change in the phase of π (λ/2 in length). We get the resultant displacement by summing oscillations:

u1(x, t) = um cos 2π

(
t

T
−
L− x
λ

)
and u2(x, t) = um cos 2π

(
t

T
−
L+ x

λ

)
.

Resultant displacement of particles from equilibrium, u(x, t), at point M is:

u(x, t) = u1 + u2 = 2um cos 2π
x

λ
cos 2π

(
t

T
−
L

λ

)
The resultant amplitude of the displacement for the particles is: A = 2um cos 2π

x

λ

Amplitude is equal to zero at points x = (2k + 1)
λ

4
(k = 0, 1, 2, ...) from the wall, called nodes. At all

the points at distances x = k
λ

2
the amplitude changes between its extreme values 2um and −2um, called

antinodes. Therefore, at the open end of the tube (x = 0) there is an antinode for particle displacement.
A standing sound wave has particle displacement nodes
(points where the air does not vibrate) and displacement
antinodes (points where the amplitude of the air vibration
is a maximum). Pressure nodes and antinodes also exist
within the standing waveform, 90o relative to the displace-
ment nodes and antinodes. When the air of the two displace-
ment antinodes are moving toward each other, the pressure
of the pressure antinode is maximum. When they are moving
apart, the pressure goes to a minimum. Patterns of the first
(fundamental mode) and second mode of the pressure stand-
ing wave are presented in Fig. 2. In the figure, ”S” stands for
speaker and ”M” stands for microphone.
Appendix B has an animation of a corresponding transverse
standing wave with the two waves producing it, moving in the
opposite directions (done in Mathematica).

Figure 2. Standing waves in a closed tube of
length L. The ends are regions of maximum
pressure vibration (antinodes).

Resonating columns, white noise, and FFTs (fast Fourier transforms)

Any length of a tube forms a natural resonant cavity that will preferentially amplify sound waves whose
frequency precisely matches those frequencies described by the equation:

fn =
nvs

2L
=
vs

λn
with n = 1, 2, ... where λn =

2L

n
(1)

where fn is a resonant frequency, n is an integer (the ”overtone number”), vs is the speed of sound in the
cavity, and L is the length of the cavity.

As the equation suggests, there are infinite number of possible resonances for a given length L. If a
white-noise source (equal intensity at all frequencies) is introduced to the cavity, the tube will ”naturally”
select and amplify frequencies that satisfy Eq. (1). At the other end, a microphone ”listens” for these resonant
frequencies and, using Fourier transform analysis, these frequencies can be measured. Since Eq. (1) gives:

vs = fnλn =
fn2L

n
(2)

we have a straightforward and elegant way to measure the speed of sound.

NOTE: The following empirical formulas give somewhat more accurate description of the resonance re-
quirements for standing waves in a resonant tube.

For a closed-closed or open-open tube: λn =
2

n
(L+ 0.8d), n = 1, 2, 3, ...

where L is the length of the tube and d is the diameter.
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For a closed-open tube or tube open on one side: λn =
4

n
(L+ 0.4d), n = 1, 3, 5, 7, ...

where L is the length of the tube and d is the diameter.

NOTE: When using the microphone to investigate the waveform within the tube, be aware that the micro-
phone is a pressure transducer. A maximum signal, therefore, indicates a pressure antinode (a displacement
node) and a minimum (zero) signal indicates a pressure node (displacement antinode).

General principles of FFTs

(a) The Fourier series. The Fourier transform relates a periodic function, S(t) or signal, that can be repre-
sented (subject to a few conditions known as the Dirichlet criteria) using a Fourier series,

S(t) = a0 +
∞∑
k=1

|ak cos(2πkf1t) + bk sin(2πkf1t)| (3)

shown in red, in fig. 3, to the function’s frequency domain,
Ŝ , shown in blue. The component frequencies, spread across
the frequency spectrum, are represented as peaks in the fre-
quency domain. Fourier transform measures which and how
much, of an individual frequency, is present in a function
S(t). The period , T , of the signal equals 1/f1, the re-
ciprocal of the fundamental frequency. The other spectral
components (or lines) of the signal are overtones occurring
with spacing ∆f = f1 at fk = kf1 (k = 2, 3, ...). The
Fourier coefficients (ak, bk) associated with the spectral lines
are the

Figure 3.

amplitudes of the various cosine and sine components. The coefficient a0 is the coefficient associated with
the zero-frequency (dc) component. Since sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2, eq. 3 can be rewritten as

S(t) = a0 +
∞∑
k=1

Ak sin(2πkf1t+ δk) (4)

where δk is a phase angle such that ak = Ak sin δk and bk = Ak cos δk (5)

with Ak =
√

(a2
k + b2

k). By virtue of orthogonallity relationships Fourier coefficients can be obtained from

a0 =
1

T

∫ T/2
−T/2

S(t)dt

ak =
2

T

∫ T/2
−T/2

S(t) cos(2πkf1t)dt =
2

T

∫ T
0
S(t) cos(2πkf1t)dt, bk =

2

T

∫ T
0
S(t) sin(2πkf1t)dt (6)

where k ≤ 1. One can find Ak and δk us-
ing equations (5), which permit representation
of the original time-dependent signal in the fre-
quency domain. Figures 4a and b show schemat-
ically such a transformation for repetitive signal
with period T . The first spectral line occurs
at frequency 1/T and the others with spacing
1/T . Notice that the spectral lines continue in-
definitely.
(b) Discrete Fourier analyses. Let examine now
the more realistic situation in which discrete data
from a nonrepetitive signal is gathered during a
finite time interval. When a signal is sampled
at time intervals ∆t using an analogue-to-digital
converter (A/D converter), a finite number of

Figure 4. Schematic representation of Fourier transforma-
tion of signals from time to frequency domain.
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samples(N) is taken during a finite record time (TR) with TR = N∆t, fig. 4c. Although in reality we do
not know what happens to the signal before or after this observation time, the Fourier transform procedure
implicitly assumes that the signal is periodic with period TR. As we have seen from fig. 4a and b, this implied
periodic time will control not only the lowest frequency f1 = 1/TR but also the spacing, ∆f = 1/TR,
between the discrete frequencies corresponding to the spectral lines. The sampling frequency fsamp, that
is equal to the reciprocal of the time between data samples (∆t), controls the highest frequency component
(fmax) in the Fourier series, fig.4̇d. This can be seen as follows. IfN equally spaced data samples are gathered
in the time domain, then N/2 frequencies with equal spacing ∆f are generated in the frequency domain.
Only half as many spectral lines are generated as there are time samples because each frequency actually
contains two bits of data - amplitude and phase. Thus fmax = (N/2)∆f = (N/2)(1/TR) = fsamp/2.
This maximum frequency is often called the Nyquist frequency (fNQ = fmax).
In fig. 4c we have a continuous signal that corresponds to a sampling interval of zero, ∆t = 0. Thus fsamp
(and hence fmax) are infinite so that the spectral lines of the Fourier transform (FT) in fig. 4b continue
indefinitely. Sampling of a continuous signal, as shown in fig. 4c, yields a discrete Fourier transform (DFT),
fig. 4d, which is an approximation to the Fourier transform of the continuous signal in that the DFT cannot
yield spectral lines above fsamp/2.

We still have to cast eqs. 6 in forms suitable for digital analysis. Replacing t by n∆t, f1 by 1/(N∆t)
(= 1/TR) and dt/T by ∆t/(N∆t) we obtain:

ak =
2

N

N−1∑
n=0

S(n) cos(2πkn/N), bk =
2

N

N−1∑
n=0

S(n) sin(2πkn/N) (7)

where S(n) are the signals obtained at times t(n) = n∆t. These equasions allow numerical determination
of the ak and bk coefficients. Equations 5 can then be used to obtain the amplitudes Ak and phases δk
associated with the various fk = k/TR for k = 1, 2, ..., N/2.

The fast Fourier transform (FFT) is simply a procedure for carrying out a DFT efficiently. Most FFT’s
require N time samples where N equals 2 raised to some integral power, e. g. 512 or 1024.

(c) For a periodic function S(t), like one on the fig. 5, if we wish to
include all the frequencies contained in our signal, the sampling fre-
quency should be at least twice the highest frequency in the signal to
be analyzed. If this condition is not satisfied the alias frequencies could
be generated. In the case when our source contains frequencies that lie

above
1

2
fsamp, we could use an anti-alias filter, to remove frequencies in

this region. Figure 5 shows an example of good sampling. ∆T is called
the sampling interval. Then the sampled function is given by the
sequence: s(nT ), for integer values of n. The sampling frequency
or sampling rate, fs, is defined as the number of samples obtained
in one second (samples per second), thus fs = 1

∆T
. Reconstructing a

continuous function from samples is done by interpolation algorithms.

Figure 5. The discrete samples are in-
dicated by the vertical lines.

See Appendix A for an example of the process described above, in the case of a representation of the white
noise signal, using Mathematica.

Sites with some explanations of FFT:
http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
http://en.wikipedia.org/wiki/Frequency domain
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APPARATUS:

• A plastic (PVC) tube with a wooden stand

• Three PVC end-plugs, one with a built-in
speaker, one with a hole for a miniature
microphone (with an amplifier) and a long
metal rod (for use with the oscilloscope)
shown in the figure, and one with a built in
microphone (for use with the computer)

• Connectors for direct attachment of the speaker to the function generator
or the computer’s source of sound or white noise, and connectors for direct
attachment of the microphone to the oscilloscope or the computer

• Microphone metal probe rod

• Function generator (BK PRECISION 4011A, 5 MHz)

• Oscilloscope (Tektronix TDS 1012 or better, Two channel digital storage
oscilloscope)

EXPERIMENTAL SETUP for the first part:

1. Connect (or check connection) speaker (built in one PVC
end-plug) to the function generator. Connect (or check con-
nection) microphone with an amplifier (mounted through a
hole of the other PVC end-plug) to the oscilloscope as repre-
sented schematically in Fig. 6.

2. Set the frequency of sine-signal from the function generator
to approximately 100 Hz, and the output level to zero, then
turn it on. Slowly raise the output level until you hear a
sound from the speaker.

Oscilloscope

Microphone
CH2

T
u
b
e

Speaker

Function
Generator

c
c

CH1c���� cfT c Output

Figure 6. Equipment setup for standing waves.

⇒ CAUTION: You can damage the speaker by overdriving it. Raise the amplitude cautiously. The sound
from the speaker should be clearly audible, but not loud. Note also that many function generators become more
efficient at higher frequencies, so you may need to reduce the amplitude as you raise the frequency.

⇒ NOTE: It can be difficult to find resonant frequencies at low frequencies (0-300 Hz). If you have trouble
with this, try finding the higher frequency resonant mode first, then use your knowledge of resonance modes
in a tube to determine the lower resonant frequencies. Be sure to check to make sure that resonance really
occurs at those frequencies.

3. Turn on the oscilloscope and switch on the microphone’s amplifier, set the sweep speed to approximately
match the frequency of the signal generator and set the gain until you can clearly see the signal from the
microphone. If you can’t see the microphone signal, even at maximum gain, adjust the frequency of the signal
generator until the sound from the speaker is a maximum. Then raise the amplitude of the signal generator
until you can see the signal clearly on the oscilloscope.

4. You can now find resonant frequencies by adjusting the frequency of the sound waves and listening for a
maximum sound and/or watching for a maximum signal on the oscilloscope. Find and make a record of at
least 5 resonant frequencies starting from the fundamental frequency. Plotting n’th frequency, fn, on

y-axis and
n

2(L+ 0.8d)
on x-axis will give speed of sound as a slope.
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EXPERIMENTAL SETUP for the second part:

1. Remove the end-plug from the tube. Pull first the microphone and then the rod through a hole in the
end-plug. Attach the microphone to the end of the rod with an electrical tape and put the microphone, rod,
and the end-plug back on the resonant tube (with mic and rod inside the tube).

2. Make (or leave) the same connections as in the first part.
3. You will use the microphone taped on the rod, to determine the characteristics of the standing waves for at
least 5 resonant frequencies you found in the first part. You might have problem with the first two frequencies,
so start the measurement with the third. As you move the microphone, taped on the rod, down the length
of the tube, note the positions where the oscilloscope signal has a maximum and where it has a minimum.
Record these positions in table 1, starting with the position of the rod fully inside the tube. You will not be
able to reach the antinode on the speaker because the rod is not long enough, so record as many as you can.

4. Repeat the above procedure for at least 5 different resonant frequencies and record your result in the
table. Draw the standing wave for the pressure inside the tube, for each frequency, starting with f1.

EXPERIMENTAL SETUP for the third part (Fourier transform):

1. Remove the speaker male connection to the function generator. Use female-

male connecting wire to connect it now to the speaker-outlet at the front
panel of the computer.

2. Remove the end-plug with the microphone with an amplifier and the rod.
Instead, attach the other end-plug with a microphone glued to its center. This
microphone does not have an amplifier, because the computer sound card will
amplify the sound instead. Connect the other end of the microphone cable to

the microphone-outlet at the front panel of the computer, as represented
schematically in Fig. 7.

Computer

Microphone

T
u
b
e

Speakerc c

c

Speaker
plug c

plug

Microphone

Figure 7. Setup for FFt method.

3. Open the Lab View program which will produce white noise (signal with large array of frequencies, named
”DC...”). You will send that signal to the speaker. To analyze the microphone signal open the program
which uses Fourier transform to transform time-signal into the frequency-signal (named ”OK...”).

4. Before starting the Fourier transform program, open on
your desktop a new folder with the name you want (for
example: sound-output).

5. Turn on the program to produce the signal (click on the
white arrow) and then run the analysis (click the white ar-
row on ”OK”). Run 20-30 cycles of the ”OK” program. To
stop the run, click the ”STOP” button, that is in the mid-
dle between four plots (NOT the ”stop acquision” button
to the right of the starting arrow). A window will appear
asking you the location of the file (choose DESKTOP, and
the folder you have just opened, and click SAVE. If the small
window appear with a message ”You don’t have permission
to acess this folder”, just click ”CANCEL”.

6. Make decision on appropriate threshold and peak-width which fitting routine
in ”OK” program uses to find the centroids of the peaks representing uncali-
brated resonant frequencies. Run again 40-50 cycles. Save the file with another
name. Delete file representing the first run, before you have actually decided on
the appropriate threshold and peak-width. Save the run when you are sure that
the correct peaks representing the uncalibrated frequencies have been saved.

6



7. Couple of windows will show you the progress of the analysis (file ”OK”).The top-right graph shows
the time-signal microphone receives after the white noise signal was sent to the speaker. After the Fourier
transform, the uncalibrated frequencies found in the tube are presented in the low-left graph, and averaged
version (average of 10) of the same, in the lower-right graph. Visible are uncalibrated resonant frequencies
and they are equidistant, with the uncalibrated fundamental frequency being the difference between each
consecutive ones. The last figure shows a plot of the uncalibrated frequencies versus their order, n, which has
a slope equal to the uncalibrated fundamental frequency. The peaks centroids, representing the uncalibrated
resonant frequency positions, were established using Lab View fitting routine.

8. After choosing correct threshold and peak-width, you get an useful output, saved in an file in EXCEL
format. Open the file and insert a column before the column with the uncalibrated resonant frequencies (the
last one). Fill the inserted coulmn with intehers from 1 to n in increments of 1 (representing mode order).
Use the column with the integers and the uncalibrated resonant frequencies for analyses and plotting. You
can also prepare a column with actual resonant frequencies first and then start analyses and plotting.

9. In order to get correct value for the resonant frequency from the results of the fit, you should calibrate
the low graphs. A certain uncalibrated frequency peak represents the number of samples found during the
time of sampling (0.8 second for the run plotted). In order to find actual frequency, you need to find number
of samples during one second, which in this specific case means that we have to multiply the peak position
(uncalibrated sample frequency from the lower plots) by 1.25 to get the correct measured resonant frequency.

ANALYSIS:

Part 1:

1. Using data from Table 1 plot the resonant frequencies, fn, as function of the inverse of the n’th wavelength,
n

2(L+ 0.8d)
(using empirical relation for wavelength that involves diameter beside the length of the tube).

The slope and uncertainty of this plot is the speed of sound in air at room temperature, and its uncertainty.

2. Comment the measured intercept.

Part 2:

1. How does the average node-antinode distance for the n’th frequency relate to the n’th wavelength?

2. Plot the resonant frequencies, fn, as function of the inverse of the measured n’th wavelength,
1

4(N−A)avg,n
.

The slope and uncertainty of this plot is the speed of sound in air at room temperature, and its uncertainty.

3. Comment the measured intercept.

4. Compare the results for the speed of sound in parts 1 and 2.

Part 3:

1. Use first 20 or so ”resonant frequencies” (from the peak-fitting routine) entered in table 3, or the values for
the ”resonant frequencies” you have saved as excel file. These ”frequencies” represent number of samples in
time ∆t= 0.8 seconds, for example. To find the actual resonant frequencies, find number of samples during

1 second, multiplying ”resonant frequencies” with
1

∆t
= 1.25 here. Plot actual nth resonant frequencies

(on y axis) as function of order n (on x axuis). The slope of this plot is a fundamental frequency. Using
the fundamental frequency and its uncertainty find the speed of sound and its uncertainty. Use the empirical
relation for the wavelength to find the wavelength of the fundamental frequency.

2. Comment the measured intercept of the fn − n plot.

Which method, out of the three above, does measure the speed of sound (a) most accurate and (b) most
precise.
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Table: Part 1 Temperature in the room in oC: T ±∆T =

Length of the tube, L±∆L = Diameter of the tube, d±∆d =

1 2 3 4 5 6 7 8

order of mode = n

fn (Hz)

Table: Part 2 All the node-antinode distances, N-A, are in meters

n fn (Hz) N-A1 N-A2 N-A3 N-A4 N-A5 N-A6 N-A7 N-A8 N-Aavg
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Draw the standing wave patterns for the pressure wave for at least 5 resonant frequencies.
Each dotted box has length of L/24

Table: Part 3

1 2 3 4 5 6 7 8 9 10

order of mode = n

fn (Hz)

11 12 13 14 15 16 17 18 19 20

order of mode = n

fn (Hz)
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Appendix A

1. Finding the Fourier transform of a white noise using Mathematica

Let us describe a white noise (a signal
with all the frequencies within a cer-
tain range, all with the same amplitude)
as a combination of 700 cosine func-
tions of a form cos(it), where i goes
from 1 to 700, all with an amplitude
of 1. The display of couple of functions
(cos(t), cos(5t), cos(10t), cos(100t), and
cos(700t)) are displayed in figure 1. You
can imagine that displaying all of them
would fill the figure so wouldn’t be any
free space. The microphone experiences
the signal equal to sum of all, shown in
figure 2. It shows sum of 700 cos(nt)

Figure 1. Part of white noise signal

functions (n = 1, ..., 700) for time −0.1 ≤ t ≤ 0.1. The figure is drawn using expression in Mathematica:

Plot [
700∑
i=1

(Cos[it]), {t,−0.1, 0.1},PlotRange→ All]

In order to prepare the micriophone signal for Fourier transform we
should sample the signal by digitizing the function drawn in figure 2.
That produces the table of values of the sum signal for time points
0.001 s apart, from -0.1to 0.1 s, called ftable in the expression used
in Mathematica:

ftable = Table [
700∑
i=1

(Cos[it]), {t,−0.1, 0.1, 0.001};

To check if the table was done correctly one can convert points from
the table to the function again, using expression in Mathematica: Figure 2.

ListPlot[ftable, Joined→ True, PlotRange→ All]

the plot of which is shown in figure 3.
Table correctly represents microphone signal, so we are ready to use
Fourier transform, by using expression in Mathematica:

ListPlot[Abs[Fourier[ftable]], PlotRange→ True, Joined→ True]

the plot of which is shown at the left in figure 4. Because of the sym-
metry of the Fourier transform output, half of the plot is displayed as
the Fourier transform of the function, like one shown in the right side
of figure 4. That plot has approximatelly constant amplitude, as do the Figure 3.

original cosine functions, as we
should expect. To check the fre-
quemcies, we can calculate the
maximum frequency, of cos(700t)
function. The original maximum
frequency is f700 = 700

2π
=

111.4 Hz. Reading from the
Forier transform plot, the un-
calibrated maximum frequency is
about f ′100 = 23 ± 1 Hz. The
actual frequency can be found

Figure 4.
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using the factor
1

0.2
= 5 because the time of the white noise signal and sampling is 0.2 s. Therefore,

f700 =
f ′700

∆t
=

23

0.2
= 115 Hz and its uncertainty is σf700 =

σ′f700
∆t

= 5 Hz. This result, (115 ± 5) Hz is

consistent with the original frequency of 111.4 Hz within one
standard deviation.

The last we can check, is the actual Fourier transform. We can
perform inverse operation to see if we can get back the initial
function (microphone signal). The expression in Mathematica
is:

ListPlot[InverseFourier[Fourier[ftable]], PlotRange → All,
Joined→ True]

The plot of this operation is presented in figure 5. As we can
see, the operation brought the original function back. Figure 5.

Appenix B

Describing standing waves using Mathematica

The expression (1) in Mathematica, represents a traveling wave moving leftward (in −x direction), rightward
(in +x direction), and the standing wave resulted from the sum of the two waves.

Animate[Plot{ [Cos[1.5 x - 6 t], Cos[1.5 x + 6 t], [Cos[1.5 x - 6 t] + Cos[1.5 x + 6 t]}, { x, 0, 2 Pi }, PlotRange
→ 2, PlotStyle { Dotted, Dashed, Thick }], { t, 0, 5 }, AnimationRunning→ False] (1)

A snapshot of the plot with animation of the expression (1) is shown in figure 1.

Figure 1. The dotted line represents the wave moving rightward, dashed line represents the wave moving
leftward, and the thick line represents the standing wave of the third harmonic.

NOTE: The speed of the waves moving leftward and rightward is the same. The range of the plot represents
the length of the resonant tube. The wavelength of the third harmonic is 1.5 times shoter than the length of
the resonant tube.
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